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Abstract

A novel effective algorithm for the problem of the circular punch in contact with a stratum rested on a rigid base is
suggested in this paper. The problem is reduced to the Fredholm integral equations of the second kind. In contrast to
the Cooke-Lebedev method and the moments method, which are traditionally employed, the operators of these integral
equations are strictly positive definite even in the limiting case of the zero thickness. The latter provides efficient appli-
cations of numerical methods. It is also shown that a special approximation enables to obtain an approximate solution
via a finite system of linear algebraic equations. As example, the well-known problem for a homogeneous layer is stud-
ied. An approximate analytical solution is found with a certain iterative method for a flat punch. This solution is
remarkable accurate and possesses the right asymptotic behavior for both a very thin and a very thick layers. Asymp-
totic formulas for the thin inhomogeneous stratum indented by an indenter of arbitrary profile are pointed out.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the present investigation, we consider an elastic isotropic inhomogeneous (or stratified) medium con-
sisting of layers with parallel boundaries which is indented by a frictionless circular punch. The elastic prop-
erties of the layers may vary in the depth direction only. The considered stratum is bonded to the rigid base
or can slip on the rigid substrate without friction.

There are many publications in the treated field. In particular, a number of the papers are dedicated to
the simplest case of a homogeneous layer. This case is covered comprehensively in the books by Ufliand
(1967) and Vorovich et al. (1974). The general case also was treated intensively. It is partly covered in
the book by Shevlyakov (1977).
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Two approaches were employed for solving the studied problem. In the first of them, the problem is for-
mulated in the form of the dual integral equations involving Bessel function of the first kind:

R/OmAn(p)f(P)Jmpr)dp:un(r), 0<r<l, (1)

| oo =o. 1<r<c )

The unknown 4,(p) is the Hankel transform of the coefficient p,(r) of the nth harmonic in the Fourier
expansion of the contact pressure Y p,(r) exp(in0), R is the radius of the contact zone, (r,0,z) are the
dimensionless cylindrical coordinates, J,(pr) is the Bessel function of the first kind.

The conditions of the punch equilibrium are expressed directly via Ay(p), Ai(p) and the arm d of the
imbedding force 2

21R*40(0) = 2, (3)

47R3 lim Reldi (p)] = 2d. (4)
p—0 p

The odd function f{p) depends on the mechanical and geometrical characteristics: the shear moduli G(z), the
Poisson’s ratios v(z) and the thickness. It is positive for p > 0 and has the following asymptotic behavior:

fp) =2 p+ 00, 7>0, asp—0, (5)

fp)=1+1(p) as p — oo, (6)

where I(p) = O(p“exp(—bp)), k = 0, b> 0 if every layer is homogeneous, and /(p) = O(1/p) in the general
case; the positive number y becomes O(A) as the dimensionless thickness of the stratum A approaches zero,
except the case of the incompressible layer bonded to the rigid base. This asymptotic behavior is well-
known. The explicit expressions of the coefficient y for the piecewise homogeneous stratum, which also take
into account a stratification, arise from the results by Privarnikov and Shevlyakov and their co-workers
(Shevlyakov, 1977). A piecewise constant approximation of G(z) and v(z) yields in the limit the value of
y for arbitrary inhomogeneity.
For the non-stratified inhomogeneous layer which is bonded to the rigid substrate,

. Go 1= 2v(2) i
/n(l—vo)/o T—v@)eE & (7)

where Gy and v, are the values of the elastic constants in the contact plane (Malits, 2004). We see that in this
special case y = 0 for an incompressible layer.

The given functions u,(r) in the right-hand are the Fourier coefficients of the function:
u(r,0) = Golc + ciRrcos 0 — v(r,0)] /(1 — vy), where z=u(r,0) is the equation of the punch surface,
¢+ cpcosf is a rigid displacement of the punch.

The dual integral equations (1) and (2) are reduced with the Cooke-Lebedev method (Cooke, 1956;
Lebedev, 1957) to the Fredholm integral equations of the second kind whose solutions may be found with
numerical methods (Ufliand, 1967; Shevlyakov, 1977).

The second approach is based on the direct treatment of the equivalent Fredholm integral equations of
the first kind for the contact pressure

R / (0 ( / " OV ) 00) dp)tdr —u (), 0<r<l, (8)
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with the moment method by using P3, (V1 —#2)/V'1 —r?, P{(x) is the associated Legendre polynomial, as
the basic functions that is referred as “the orthogonal polynomials method”. This choose is rested on the
fact that these basic functions are the eigenfunctions of (8) in the special case of the homogeneous half-
space when f{p) = 1. These results may be derived as some realization of the Cooke-Lebedev method as
well (Shevlyakov, 1977).

It is appeared even in the simplest case of the homogeneous layer that the methods mentioned above fail
as the thickness of the layer 4 is very small. The explanation is that f{p) — 0 as A — 0, and, consequently, the
kernels of the integral equations (8) become small meanwhile the right-hand parts u,(r) are not depend on 4.
In other words, the equations are ill-conditioned. In order to overcome this difficulties Alexandrov and
Babeshko (Vorovich et al., 1974) suggested another approach which reduced (8) to the infinite system of
the linear algebraic equations. Their method based on the Wiener—-Hopf technique requires knowledge
of the complex zeroes of f{p) or, at least, its special approximations. This approach is convenient to derive
a leading asymptotic term as 41— 0, but it is complicated for application in the general case.

The problem for the inhomogeneous or stratified medium is much more complicated because of the tan-
gle dependence of f{p) on the mechanical and geometrical characteristics as well as the necessity to calculate
this function numerically. The theories which have been derived from the physical arguments (Barber, 1990;
Jaffar, 1989) cannot be used for the inhomogeneous stratum as well. It is important, in this situation, to
have a simple stable algorithm which conforms to the specificity of the problem. We suggest in this paper
a certain novel approach and demonstrate its virtues on the “classic” problem for the homogeneous layer
indented by a flat punch. In particular, we derive regular integral equations whose operators remain strictly
positive definite in the limit A — 0 and discuss their approximate solution. For the homogeneous layer, this
enables us to determine a solution for any thickness and to point out simple approximate formulas. Com-
parisons with the known results of numerical calculations manifest the remarkable accuracy of these for-
mulas for all values of the thickness A. In the case of the thin inhomogeneous stratum, leading
asymptotic terms are pointed out.

It is well known that a solution of the dual integral equations for any integer n can be found if the algo-
rithm for » = 0 is available. Therefore we will consider further the axially symmetric strain state: n = 0, and
another important case: n =1, only.

The dual integral equations of the treated type also often arise in connection with application Hankel
transforms to mixed boundary problems in various branches of mechanics, such as fracture mechanics,
dynamic contact problems, mechanics of piezoelectric medium, hydrodynamics, and so forth. The author
hopes that the method of this paper will find wide applications. The rigorous mathematical theory of the
more general integral equations for arbitrary integer index » will be published in the nearest future.

2. Axially symmetric problem

The starting point is the discontinuous integral
22 22
o 4y —r) , O<r<t—y,
/0 PEAPIopr)dp = 8 /(2 = (r+9))( = (= 7)) ©)
=0, r>t—7,
where 77, (p,t) = Y. (pt)J(py) — Y ,u(py)Jo(pt); Ju(pt), Yi(pt) are Bessel functions of the first and second
kind, respectively, and the parameter y is defined by (5). This integral was evaluated by means of the

known integral involving three Bessel functions (Prudnikov et al., 1986). Application the inversion formula
for the Hankel transform and the following operation 1 47 give us the operator transforming Jo(pr) into

" ¢t dt
PAio(ps1)
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RolJo(pr)] = piio(p: ), (10)
(# —r)rd
“tdt/ uld r)rr : (11)
o V@ = )@~ =)
Using the operator Ry and (10) allows us to transform the first of the dual equations (1) to
R [ pA(o)f )7holp.)dp = Ralun(r)), 7 << 17, (12)
0
Now we seek Ay(p) of the form
[ )
Anlp) = 3op [ 50 a(p.5) s, (13)
where w(s) is an auxiliary function. Integrating by parts, one can rewrite this representation as
2R , R
S olp) = ()0 )7 0+~ [ s (pis) o). (14)
y

Putting (14) in the second of the dual equations (2) and interchanging the order of integration, we ascertain
by means of the integral (9) that this equation is satisfied identically. Substituting (13) to (12) and taking
into account the inversion formula for the Weber—Orr transform (Titchmarsh, 1924)

LY
0= | T 0

alp) = [ sl (0 s

we obtain the Fredholm integral equation of the second kind
I+ K)o =g(1), y<t< 1+, (16)

Ko :/ 7sw(s)K(t,S)dS7 g(t) = Ro[uo(r)], "

x 11.0(P ) 11,0(P, 5)
k()= [ pitp) - 152 AP gy,
0 Ji(py) + Yi(py)
where L(p) = mypf ()2 (py) + Y2 (p7)]/2, L(p) = 1 + O(p*Inp) as p—0, L(p) =1+ O(p°) as p > 1. The
symmetric kernel K(z,s) is continuous when the elastic properties are piecewise constant (¢ = co), or pos-

sesses a logarithmic singularity in the other case (¢ =1).
Upon inverting the Hankel transform we establish from (14) a simple formula for the contact pressure

(1+2y+292 —r)o(l +7) /1“ (s? + 7? fr)dw(s) .
Ja- >[<1+2~/ 7 V& = 49D = (r =)

Hence the stress concentration in the vicinity of the punch edge is proportional to the value of the auxiliary
function

(18)

Rpy(r) = (19)

02
tim () VT =2 = YL o1 +49). (20)
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The expression for the embedding force follows from (3) and (13)

1+y
P = 2nR/ so(s)ds. (21)

7

Another very simple relation can be derived for the work W done by the contact pressure po(r) in causing
the punch displacement u(r). Introducing the inner product of two functions as

). 006 = | s (s)p(s) ds, (22)
we have
Go — 27R (0 (7). o () = 27R? * 2 _ X pL(p)@*(p)
[ = 2R (), 100) = 208 [ 7)) dp = [ B Sap
— 2R((s), (1 + K)o). (23)
Then
W:W[ ysw(s)g(s)ds. (24)

To study the integral equation, we will use the Parseval theorem for the Weber transforms

o] —) [e8]
@ (p) / 2
-4 —dp= tw”(t)dt (25)
/o Ji(py) + Yi(py) )
and the Hilbert space induced by the inner product (22). It is readily seen from (23) that
2 Go 2
<73 W < Mo, 2
ol < =g W < Mol (26)
m=1inf L(p) >0, M =supL(p) < oc. (27)

This manifests that y/(w(s), (I + K)w) is an equivalent norm. The convergence in the functional space de-
fined by this norm is equivalent to the convergence in our Gilbert space and means the convergence by the
energy of the treated mechanical system. The Schwartz inequality, applied to (24), yields the upper estimate
for the error

w7 < TR o) a1 [ s an (28

where @(s) is some approximate solution and W is the corresponding approximate value of the punch
energy.

The estimate (26) implies the positive definiteness of the operator I + K and provides the existence of an
unique solution. The stated allows to determine a solution with both projective and iterative methods.
These methods are effective as: (1) inf L(p) is not approach zero; (2) sup L(p) is not too large. The first of
these requirements is expected to be fulfilled. The second may be violated if one of the lower layers is weak
or stratum is bonded to the base and v, approaches 1/2.

The spectrum of the self-adjoint strictly positive definite operator B =1+ K is localized within the inter-

val [m, M]. Then a solution can be determined with the following iterative method (see Krasnosel’skii et al.,
1972)
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)% (1)~ B! T(ZBM—M)*I £, -

1) =
=) =)

where T(x) is the Chebyshev polynomial, i > 1. This method converges as the geometric progression with
the quotient

T. (ZBfom)
! M+m 1
q= M+m < Mim)|*
Ti(357) ()|

In order to use simple iterations, we should know the norm of the operator K. The rough estimate of this
norm can be established by employment of the Parseval theorem (295)

/ plLlp) T (p) |
0 Jz(p;)+y2(p;)

If sup |L(p)—1]| < 1, the iterations converge. This quantity may be expected to be small for many cases since
L(p)—1 =0 at points p = 0 and p = oc. It should be mentioned, however, that the method (29) is preferable
because of its rapid convergence.

Another approximate solution is based on the special approximation of the function L(p):

D=T154%, 10~ 61)

IK|| = sup |(w,Kwm)| = sup <sup|L(p) — 1. (30)

[[wll=1 [ol=1

where «,, and b,,, are distinct positive numbers. The operator of the Fredholm integral equation of the sec-
ond kind (16) remains strictly positive definite under this approximation. It can be rewritten as the dual
integral equations

oo N 2 2 Y
— p +a Pr1o(ps1)
o(p) 5 dp=g(t), y<t<1+y, (32)
/o w P2 by Ji(py) + Yi(py)
P/Clo(p )
a(p) dp=0, 1+7y<1t<o0, (33)
/ J(py) + Y2 (py)

with @(p) = 2RAo(p) /myp.
The solution @(p) is sought of the form
1 N

o) =0 [ e as RS (34)

where ¢(s) is a new unknown function, x; are some undetermined numbers and / is any positive number.
Substituting (34) to (32), we find

0+ xu@(t), (35)
m=0

/ P 'L(p)i(p)1i(p:1) »
(P +a )i (py) + Vi)
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After evaluation arising integrals by contour integration, the second equation (33) becomes

N 147

I(a) /' }@mwm

X -1 sQ(s)Wio(s)ds| ————==0, t>1+7, 37
;[kallfl ‘J, 6 els) Ki(axy) (37)

where Wy (s) = I,(ax S)Kl(aky)—(—l)]*" Li(ay)K,(ax §), 1,(t) and K,(¢) are the modified Bessel functions;

N

2
I, == T
e=—T10n-a)

m=1

(d? az)fl.

m

=

3 3
R
= —

The integral representation
> exp(—as)
t Vis? — 1

and the linear independence of the exponents show the functions Ky(a.?) to be linearly independent as well.
Thus the coefficients in (37) are equal to zero. Then putting (35) into these coefficients leads to the system of
the linear algebraic equations

Ko(at) = ds

N I+y
Z-xmam,k = & k= 1727"'7N7 8k :/ Sg(S)Wk«,O(S)dS7 (38)
m=1 y
14y Ii(a
am-,k = / SQDm(S) Wk'()(S)dS - Lﬁ)lék.ﬂr (39)
y Hkak

Here 6y, is the Kronecker delta. This system is equivalent to the integral equation with the strictly positive
definite operator and, therefore, has an unique solution.

The matrix elements a,, ; can be evaluated explicitly. We replace ¢,,(s) by its integral representation (36)
and interchange the order of integration. The inner integral is evaluated by means of the known integral
(Prudnikov et al., 1986). Then the arising integral can be readily found by examination of the contour
integrals

/ 2 L@IHY (0 +9)

(2 +a2) (@ + a)H'" (z7)

b

where s =0,1; the contour & consists of the interval [—R,R] of the real axis and the arc z=R,
0 < arg(z) < m; H\V(2) is the Bessel function of the third kind.
Finally, we have

N
& (1 4+ 9) Uiy (b,)b, 7 TI(B? — &)
I=1
am?k = E Z ) X 5 . — , (40)
=1 (b2 — a2) (b} — a2)K (b)) H(b" —b7)
I#r

Ui = b.Ky(b,(14+9))Wio(1 +7) + axKo (b (1 4+ 7)) Wi (1 + ).
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We shall prove that if the approximation is fairly accurate

SOl s, olp) = L) - L),
v) an
) k)

Lp) L@ —ep)/Lp)] ~1-¢

then the corresponding approximative value of the punch energy W is close to the exact value W.
_ Let w(#) be a solution of the equation (I + K)w = g(¢) where K is obtained from K by replacing L(p) by
L(p). We write

> e(p)@o(p)xio(pss)
(”K)(‘“_‘”O):/O PR + 1)

Since the operator I+ K is symmetric, we obtain

S = W= [ 0l — o)) di = (0(0) = on), 1+ K)o
HP)P(P)O)
Ji(py) + Yi(py)

Now the Parseval theorem coupled with the inequalities 2xy < x* + y* and (41) gives

=«maa+wa—m»=[wp

~ e 1 -~
W—-WwWI<z|\W+—W].
| | 2[ +178 ]

Upon using this estimate we achieve the errors for the punch energy

|W—W|<£(2—£) \W:W|< e

/4 2 -3¢’ w 1—¢

One might see that the algorithm remains valid if we take some 7 instead of y and any even rational approx-
imation instead of the approximation (31).

Note that approximations similar to (31) are often used in the Russian literature for equations contain-
ing kernels of integral transforms which arise from the Sturm-Liouville problem (see, for example,
Aizikovich and Trubchik, 1989). Their approach is based on explicit representations of the solutions in
the form of finite combinations of the functions that obey the appropriate differential equation.

(42)

3.Casen=1

A solution for n =1 is constructed in a manner which is analogous to the manner suggested for the axi-
ally symmetric problem. The discontinuous integral
2P 42— 2
( / ) , O<r<t—y,

/prx"aﬂo(p, t)J1(pr)dp — 2 m}r\/((r +9) =2)((r—7)" -1 (43)

yr

0, r>t—y,

evaluated by means of the integrals from the handbook by Prudnikov et al. (1986) is employed in place of
(9). Its inversion gives

R, [J1(pr)] = pii (p: 1), (44)
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_p
B < / (49—t )d . (45)
T
" V=499 = =)
These relations and the representation
I+ o
o) =p [ swls)zt, (.5)ds = pl) (46)
enable us to derive the Fredholm integral equation of the second kind
(I+S)y =h(1), r<t<l+y, (47)
14y
Si= [ S h0) = Ryl (48)
> 21 )11, (s 1)
S(ts) = [ plLlp) - 15 PP g (#9)
0 Ji(py) + Yi(py)
The corresponding contact pressure can be found from the expression
142y =)L+ 9)¥(1+7) 7 +77 = dstﬁs
Roi(r) — . ) . > L0 s0)
/- r >[<1+2~/ ) J — ) — (= ))
that gives the stress intensity factor
/5 22
timp, (VT =72 = YLy (14, (51)
The condition (4) becomes
I+y
2nR*Re W(s)(s* —9?)ds = 2d. (52)

7
The work W, done by the contact pressure p(r) in causing the conjugate punch displacement u;(r) is

Wl:% /V s (s)h(s) ds. (53)

It is readily seen that m < |I + S|| < M, where numbers m and M are the same that were defined above in
the axially symmetric case. This involves that the numerical methods pointed out above for Eq. (16) are also
suitable for Eq. (47). The estimate for the norm of the integral operator remains the same as well:
IS|| < sup|L(p)—1].

A slight correction permits to adopt the above method of the approximate reduction to the system of the
algebraic equations. We take a solution of the form

L D) RS
W) =705 | 00 pas TR S, (54)

where ¢(s) is a new unknown function, y; are undetermined numbers, / is any positive number and L (p) is
defined by (31).
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The substitution (54) coupled with the approximation L(p) ~ L(p) leads to the equations

N N
¢(t):h(t)+zynz¢nz(t)a Zymcmk:_hk; k= 1121"'7N7 (55)
m=0 m=1
1T y 14
* p'Lp)J 211 (p,t)dp o
b= | & EL/AHLUL S | remasas,
o P+a)lVilpy) + Yilpy)] y
-1 T 72
& (L+9) Uil i1 (b)b, 1B — a7)
Cnic =7 > . . (56)
(b7 - ad)(b] — a2)K i (by) T1(67 = b7)
2
4. Indentation of a flat punch
For an inclined circular flat punch,
uo(r) = Goc/(1 —vo) = wp, 2ui(r) = c1rRGy/(1 — vy) = wyr, (57)

poi(r) =p(r).

In this case, the right parts of the integral equations for the auxiliary functions can be evaluated explicitly:

. 2w,
g(1) = woRo[1] = wo lim Re[Jo(pr)] = ==,
p—0 Ty
B o 1 WL,
h(e) = wiRs 3] = w lim SR =5 =),

We will solve Eq. (16) with the simplest and weakest version i = 1 of the algorithm (29):
M+m-—2 I 2

2
wk“(t):( M+m _M+mK)w"(t)+M+mg(t)’
k+1

q M —m
_ < = .
o) = ox0ll < len(ll{ = 4=

Taking wmo(t) = 2wo/my and making one iteration, we obtain the approximate solution
" 2(1 " 00 v ’ 141 »y t
2 MAm o Jilpy) + Yi(py)

whose absolute error is less than 2wy0/my, 0 = (M—m)*/[2m(M + m)].
An approximate solution of Eq. (47) having the error w0/my can be derived in an analogous manner

2,2 2 * 21 (P, 0)x(p, )
SO~ ) g | e N EE )
1p7) = L+ 912 1+ 9) + 7710 (p, 1 +9).

The approximate formulas connecting the displacements of the punch with the imbedding force now fol-
low from the relations (21) and (52)

(58)

2y 1

Q
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(=2 _, 2 80+’ /oo [L(p)—l][x’{‘l(nlﬂ)r
0

~a+ o dp, 60

RGoc 7 (M +m) PR+ )] (©0)
2(1 — vo)2d 1 N 8 /°° [L(p) — 117’ (p,7)

o T N4+ 2y— 4 + 4 In — - dp. 61

R3Goc: y T Yy (M +m) Jo pli(py) + Yi(py)] (¢1)

Of course, the above approximations are expected to be true as 0 is small. Work out them for a homoge-
neous layer.
For the frictionless homogeneous layer (problem A),
cosh2ip — 1
/() sinh21p + 24p (62)
In this case y = //m and calculations yield: m = 1, M = 1.284238, g = 1.2443 x 1072, § = 1.76845 x 10>
For the homogeneous layer which is bonded to the rigid base (problem B), we have

2k sinh 2Ap — 4p
o) = M
2xcosh2/ip+ 41 p? + x>+ 1

K=23—4v. (63)

The results of calculations are given in the Table 1, ym = A(1—2v)/(1—v)*.

It is seen that one can employ the above approximate solutions for all 4 at least if v < 0.4. We note that
in the most of applications, such as geophysics, building and mechanical designing, and so forth, it is ac-
cepted to use v = 0.25 or 0.3. The estimates for the error 6 deteriorate as the Poisson ratio v approaches 1/2.
But we remind that these estimates are very rough. In many cases, the algorithm remains efficient as v close
by 1/2 if some more accurate bounds of the eigenvalues is taken instead of M and m. So, it can be readily
found that for A>> 1 the smallest upper bound of the spectrum is 1+ O(1/4). The limiting case of the
incompressible medium is peculiar since y =0 for v=1/2 and the lower bound m = 0. Moreover, if
2—0, then ||I + K| —0, |[I +S||—0 under any choice y = O(L), ¢ <3/2, and the operators I + K, I+ S
become unbounded as y = O(A°), ¢ = 3/2. Consequently, for the bonded thin incompressible layer the algo-
rithm is not effective.

Asymptotic analysis of integrals based on the Mellin transform technique (Bleistein and Handelsman,
1986) enables us to derive from the relations (60), (61), (58) and (59) very simple asymptotic formulas:

~ 1 —vy)2 2—4D 1
p_U=wW?_, +0(5), 41— o, (64)
RGyc Y Y
2(1 —vg)2d 16 1 ,
//:(%70):_+0_2 , A — 00, (65)
R’ GoCl 3 Y
Table 1
Results of calculations for the problem B
v m M g =4 0
0 1 1.253756 0.1126 1.429x 1072
0.25 1 1.273151 0.1202 1.641 x 1072
0.3 1 1.311557 0.1348 2.1x1072
0.4 1 1.587134 0.2269 6.662 x 1072
0.45 1 2.2816 0.3905 0.25026
0.49 1 8.5522 0.7906 2.98548
1

0.495 16.5526 0.8861 6.89024
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and

P =24 ()T = Tod) + B, =0, (66)

1
%:;—&—4—1"—#231—(3F—2F0)5+B1(5)52, A= 0, (67)
where 6 = y/(1 +y), B,(d) = O(1) as 1—0,

L@)—l

8 o0
b= (M + m) /0 pli(p) + Yi(p)]

it | PO it
(M +m) Jo Y P M +m

For the problem A, D =0.26266, I' = 1.64456, I'y = 1.75113. For the problem B as v=10.3, D = 0.23554,
I' =1.95395, I'y=1.73044. The discrepancies of (64) and (65) from the exact asymptotic expansions
(Vorovich et al., 1974)

dp,

4

~ ag\k 20.064 4aq

P =4 =) - — (1+= =1.

7 k;( z) ot ( +M>, ay = 1.377, (68)
16 5.016

=21+ 222), 69
3( 377;23) (69)

are <1% for A > 4.

Choosing By(d) = 2.76, B,(9) = 10.5—28.56 for the problem A and By(d) =35.22, B|(0) = 11.8—384> for
the problem B, we obtain certain simple approximate formulas. Results for £ are summarized in Table 2,
where the columns I and II give computations by formulas (60) and (66), respectively. The column III con-
tains the values of # which have been obtained as 4 < 2 in Ufliand (1967) with the Cooke-Lebedev method
by numerical analysis of the Fredholm equation of the second kind; for /4 = 4 this one is found from the
exact asymptotic formula (68). Table 3 for (61) and (67) has the same structure. We observe that our expres-
sions are almost exact as 4 < 4 and overlap the values (64) and (65) at A =4.

The asymptotic expansion for the stress intensity factor is given by the relation

. 2G
lim[p, (r) + 2p, () cos O)V1 — 2 = —=">[cay + c161R cos 0], (70)
r—1 n(l — vo)R
- (1 —2—)%D+O(i7), )i — 00,
\/50'0 = r V (71)
- 05+ 0(8%), A — 0,
Table 2
7 1-v9)
? = (RGL\Z'/
A B
A I 11 111 I 11 III
1/3 21.219 21.242 21.04 25.142 25.152 24.80
1/2 14.945 14.991 14.88 17.468 17.482 17.36
1 8.7414 8.834 8.80 9.882 9.912 9.92
2 5.972 5.983 6.04 6.419 6.397 6.48

4 4.882 4.928 4.884 5.059 5.115 5.077
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Table 3
L 2l=v)2d
A B
A 1 11 111 I 1I 11T
1/3 11.885 11.950 11.888 13.683 13.734 13.632
1/2 8.848 8.950 8.944 9.950 10.007 10.016
1 6.233 6.305 6.352 6.601 6.613 6.752
2 5.523 5.587 5.552 5.601 5.571 5.632
4 5.381 5.379 5.361 5.402 5.408 5.378
1
1 — 0 7 s i — 00,
Voo, = /6 . 5 (72)
14+6—— 2% 4 P+ 005, A—0
s ' Turem 0(9), ,

where Q(8) = 0(5).

The results of calculations for o and o are represented in Tables 4 and 5, which are of the same struc-
ture as Table 2. It is taken Q(6) = C&° in the corresponding asymptotic expansions: C = 2.6 for the problem
A and C = 3.63 for the problem B as v = 0.3. We again see that the approximate formulas are remarkable
accurate.

We accentuate that the leading terms of all asymptotic expansions obtained above, both 1— oo and
A—0, coincide with the exact leading terms of the asymptotic expansions (Vorovich et al., 1974). One might
guess that the leading terms of the asymptotic expansions as y < 1 for the inhomogeneous stratum have the
same form:

2GyRc GoR’c,
{@ ~J —7 ~ —7 (73)
(1 =) 2y(1 = o)
Table 4
The stress intensity factor o
A B
A 1 11 111 1 11 111
1/3 3.165 3.165 3.142 3.472 3472 3.439
1/2 2.622 2.623 2.608 2.864 2.566 2.845
1 1.923 1.934 1.915 2.082 2.090 2.071
2 1.456 1.4752 1.460 1.548 1.566 1.551
4 1.215 1.182 1.214 1.257 1.224 1.258
Table 5
The stress intensity factor o,
A B
A I II 111 I II 111
1/3 1.678 1.680 1.672 1.812 1.813 1.802
1/2 1.429 1.434 1.426 1.528 1.529 1.524
1 1.144 1.153 1.148 1.194 1.194 1.198
2 1.033 1.028 1.032 1.047 1.033 1.047

4 1.008 1.006 1.005 1.011 1.018 1.008
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and

2G, NG
2

linll@o(r) +2p,(r)cos O]Vl — 12 ~ - [c + ciRcos O] ~ »
pak T

(1 — Vo)Rﬂ
under the condition that the coefficients of the expansion of f{p/y) in ascending powers of p are not great
numbers. This statement should be, however, rigorously proved.

The generalization of the relations (73) for the punch having the three-dimensional profile v(p,0),
p = Rr, can be easily derived

[1 + 4% cos 0} ) (74)

y 1—v p 1 R 2n
B Rt A T .
\ . R 2n
w% mas % / / v(p, 0)p* cos Odpdo. (76)
0 0 0

Note that the relations (75) and (76) are exactly the solution for a Winkler foundation of stiffness k = 2Gy/
n(1—vp)yR indented by a rigid indenter. One might find from (19) and (50) that, at least for the harmonics
n=0,1, the leading terms of the contact pressures obey Winkler’s law p,(r) = ku,(r) everywhere excepting
very narrow neighborhoods of the edge and points of discontinuity of the derivatives u/,(r). In the case of
the homogeneous layer and a smooth punch, this confirms Barber’s approximate theory (Barber, 1990). For
example, if the thin layer is indented by a rigid sphere of radius Ry, then p(r) = k(c—r*/2R,). The condition
P(R) = 0 now yields 2Ryc = R? and

Pr) = 5 (R =), )

where the contact radius is determined from (75): 2nkR* = 4Ry2. For the homogeneous layer, this asymp-
totic solution is well known (Vorovich et al., 1974; Jaffar, 1989).

We also see from the foregoing that the concept of ““a thin layer” is not only geometric but depend via y
upon elastic properties and stratification of the medium as well. In particular, the foregoing theory does not
work for the incompressible stratum bonded to the rigid substrate. The results for the homogeneous layer
(Johnson, 1985; Barber, 1990; Jaffar, 1989; Alexandrov, 2003) predict a dramatic change of the asymptotic
behavior of the thin stratum in this limit. Author’s paper (Malits, 2004) extents the technique developed
here to this case.

In conclusion, we emphasize the essential difference between Egs. (16) and (47) and equations obtained
with the Cooke-Lebedev method (or, equivalently, with the orthogonal polynomials method) whose oper-
ators in the studied problem tend to zero as y — 0.
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