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Abstract

A novel effective algorithm for the problem of the circular punch in contact with a stratum rested on a rigid base is
suggested in this paper. The problem is reduced to the Fredholm integral equations of the second kind. In contrast to
the Cooke–Lebedev method and the moments method, which are traditionally employed, the operators of these integral
equations are strictly positive definite even in the limiting case of the zero thickness. The latter provides efficient appli-
cations of numerical methods. It is also shown that a special approximation enables to obtain an approximate solution
via a finite system of linear algebraic equations. As example, the well-known problem for a homogeneous layer is stud-
ied. An approximate analytical solution is found with a certain iterative method for a flat punch. This solution is
remarkable accurate and possesses the right asymptotic behavior for both a very thin and a very thick layers. Asymp-
totic formulas for the thin inhomogeneous stratum indented by an indenter of arbitrary profile are pointed out.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the present investigation, we consider an elastic isotropic inhomogeneous (or stratified) medium con-
sisting of layers with parallel boundaries which is indented by a frictionless circular punch. The elastic prop-
erties of the layers may vary in the depth direction only. The considered stratum is bonded to the rigid base
or can slip on the rigid substrate without friction.

There are many publications in the treated field. In particular, a number of the papers are dedicated to
the simplest case of a homogeneous layer. This case is covered comprehensively in the books by Ufliand
(1967) and Vorovich et al. (1974). The general case also was treated intensively. It is partly covered in
the book by Shevlyakov (1977).
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Two approaches were employed for solving the studied problem. In the first of them, the problem is for-
mulated in the form of the dual integral equations involving Bessel function of the first kind:
R
Z 1

0

AnðpÞf ðpÞJ jnjðprÞdp ¼ unðrÞ; 0 6 r 6 1; ð1Þ

Z 1

0

pAnðpÞJ jnjðprÞdp ¼ 0; 1 6 r < 1: ð2Þ
The unknown An(p) is the Hankel transform of the coefficient pn(r) of the nth harmonic in the Fourier
expansion of the contact pressure

P
pnðrÞ expðinhÞ, R is the radius of the contact zone, (r,h,z) are the

dimensionless cylindrical coordinates, Jn(pr) is the Bessel function of the first kind.
The conditions of the punch equilibrium are expressed directly via A0(p), A1(p) and the arm d of the

imbedding force P
2pR2A0ð0Þ ¼ P; ð3Þ

4pR3 lim
p!0

Re½A1ðpÞ�
p

¼ Pd: ð4Þ
The odd function f(p) depends on the mechanical and geometrical characteristics: the shear moduli G(z), the
Poisson�s ratios m(z) and the thickness. It is positive for p > 0 and has the following asymptotic behavior:
f ðpÞ ¼ pc
2
p þ Oðp3Þ; c > 0; as p ! 0; ð5Þ

f ðpÞ ¼ 1þ lðpÞ as p ! 1; ð6Þ

where l(p) = O(pkexp(
bp)), k P 0, b > 0 if every layer is homogeneous, and l(p) = O(1/p) in the general
case; the positive number c becomes O(k) as the dimensionless thickness of the stratum k approaches zero,
except the case of the incompressible layer bonded to the rigid base. This asymptotic behavior is well-
known. The explicit expressions of the coefficient c for the piecewise homogeneous stratum, which also take
into account a stratification, arise from the results by Privarnikov and Shevlyakov and their co-workers
(Shevlyakov, 1977). A piecewise constant approximation of G(z) and m(z) yields in the limit the value of
c for arbitrary inhomogeneity.

For the non-stratified inhomogeneous layer which is bonded to the rigid substrate,
c ¼ G0

pð1
 m0Þ

Z k

0

1
 2mðzÞ
ð1
 mðzÞÞGðzÞ dz; ð7Þ
where G0 and m0 are the values of the elastic constants in the contact plane (Malits, 2004). We see that in this
special case c = 0 for an incompressible layer.

The given functions un(r) in the right-hand are the Fourier coefficients of the function:
uðr; hÞ ¼ G0½cþ c1Rr cos h 
 vðr; hÞ�=ð1
 m0Þ, where z = v(r,h) is the equation of the punch surface,
cþ c1 cos h is a rigid displacement of the punch.

The dual integral equations (1) and (2) are reduced with the Cooke–Lebedev method (Cooke, 1956;
Lebedev, 1957) to the Fredholm integral equations of the second kind whose solutions may be found with
numerical methods (Ufliand, 1967; Shevlyakov, 1977).

The second approach is based on the direct treatment of the equivalent Fredholm integral equations of
the first kind for the contact pressure
R
Z 1

0

pnðtÞ
Z 1

0

f ðpÞJnðprÞJnðptÞdp
� �

tdt ¼ unðrÞ; 0 6 r 6 1; ð8Þ
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with the moment method by using Pn
2kþnð

ffiffiffiffiffiffiffiffiffiffiffiffi
1
 r2

p
Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1
 r2

p
, Pn

kðxÞ is the associated Legendre polynomial, as
the basic functions that is referred as ‘‘the orthogonal polynomials method’’. This choose is rested on the
fact that these basic functions are the eigenfunctions of (8) in the special case of the homogeneous half-
space when f(p) = 1. These results may be derived as some realization of the Cooke–Lebedev method as
well (Shevlyakov, 1977).

It is appeared even in the simplest case of the homogeneous layer that the methods mentioned above fail
as the thickness of the layer k is very small. The explanation is that f(p)!0 as k!0, and, consequently, the
kernels of the integral equations (8) become small meanwhile the right-hand parts un(r) are not depend on k.
In other words, the equations are ill-conditioned. In order to overcome this difficulties Alexandrov and
Babeshko (Vorovich et al., 1974) suggested another approach which reduced (8) to the infinite system of
the linear algebraic equations. Their method based on the Wiener–Hopf technique requires knowledge
of the complex zeroes of f(p) or, at least, its special approximations. This approach is convenient to derive
a leading asymptotic term as k!0, but it is complicated for application in the general case.

The problem for the inhomogeneous or stratified medium is much more complicated because of the tan-
gle dependence of f(p) on the mechanical and geometrical characteristics as well as the necessity to calculate
this function numerically. The theories which have been derived from the physical arguments (Barber, 1990;
Jaffar, 1989) cannot be used for the inhomogeneous stratum as well. It is important, in this situation, to
have a simple stable algorithm which conforms to the specificity of the problem. We suggest in this paper
a certain novel approach and demonstrate its virtues on the ‘‘classic’’ problem for the homogeneous layer
indented by a flat punch. In particular, we derive regular integral equations whose operators remain strictly
positive definite in the limit k!0 and discuss their approximate solution. For the homogeneous layer, this
enables us to determine a solution for any thickness and to point out simple approximate formulas. Com-
parisons with the known results of numerical calculations manifest the remarkable accuracy of these for-
mulas for all values of the thickness k. In the case of the thin inhomogeneous stratum, leading
asymptotic terms are pointed out.

It is well known that a solution of the dual integral equations for any integer n can be found if the algo-
rithm for n = 0 is available. Therefore we will consider further the axially symmetric strain state: n = 0, and
another important case: n = 1, only.

The dual integral equations of the treated type also often arise in connection with application Hankel
transforms to mixed boundary problems in various branches of mechanics, such as fracture mechanics,
dynamic contact problems, mechanics of piezoelectric medium, hydrodynamics, and so forth. The author
hopes that the method of this paper will find wide applications. The rigorous mathematical theory of the
more general integral equations for arbitrary integer index n will be published in the nearest future.
2. Axially symmetric problem

The starting point is the discontinuous integral
Z 1

0

pvc
1;1ðp; tÞJ 0ðprÞdp ¼

2ðt2 þ c2 
 r2Þ

pct
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 
 ðr þ cÞ2Þðt2 
 ðr 
 cÞ2Þ

q ; 0 < r < t 
 c;

¼ 0; r > t 
 c;

8><>: ð9Þ
where vc
l;mðp; tÞ ¼ Y mðptÞJlðpcÞ 
 Y lðpcÞJ mðptÞ; Jl(pt), Ym(pt) are Bessel functions of the first and second

kind, respectively, and the parameter c is defined by (5). This integral was evaluated by means of the
known integral involving three Bessel functions (Prudnikov et al., 1986). Application the inversion formula
for the Hankel transform and the following operation 1

t
d
dt t give us the operator transforming J0(pr) into

pvc
1;0ðp; tÞ
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R0½J 0ðprÞ� ¼ pvc
1;0ðp; tÞ; ð10Þ

R0½�� ¼
2

pct
d

dt

Z t
c

0

ð�Þ ðt2 þ c2 
 r2Þrdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 
 ðr þ cÞ2Þðt2 
 ðr 
 cÞ2Þ

q : ð11Þ
Using the operator R0 and (10) allows us to transform the first of the dual equations (1) to
R
Z 1

0

pA0ðpÞf ðpÞv
c
1;0ðp; tÞdp ¼ R0½u0ðrÞ�; c 6 t 6 1þ c: ð12Þ
Now we seek A0(p) of the form
A0ðpÞ ¼
pc
2R

p
Z 1þc

c
sxðsÞvc

1;0ðp; sÞds; ð13Þ
where x(s) is an auxiliary function. Integrating by parts, one can rewrite this representation as
2R
pc

A0ðpÞ ¼ ð1þ cÞxð1þ cÞvc
1;1ðp; 1þ cÞ 


Z 1þc

c
svc

1;1ðp; sÞdxðsÞ: ð14Þ
Putting (14) in the second of the dual equations (2) and interchanging the order of integration, we ascertain
by means of the integral (9) that this equation is satisfied identically. Substituting (13) to (12) and taking
into account the inversion formula for the Weber–Orr transform (Titchmarsh, 1924)
-ðtÞ ¼
Z 1

0

p-ðpÞvc
1;mðp; tÞ

J 2
1ðpcÞ þ Y 2

1ðpcÞ
dp; m ¼ 1; 2;

-ðpÞ ¼
Z 1

c
s-ðsÞvc

1;mðp; tÞds;
ð15Þ
we obtain the Fredholm integral equation of the second kind
ðIþ KÞx ¼ gðtÞ; c 6 t 6 1þ c; ð16Þ

Kx ¼
Z 1þc

c
sxðsÞKðt; sÞds; gðtÞ ¼ R0½u0ðrÞ�; ð17Þ

Kðt; sÞ ¼
Z 1

0

p½LðpÞ 
 1�
vc
1;0ðp; tÞv

c
1;0ðp; sÞ

J 2
1ðpcÞ þ Y 2

1ðpcÞ
dp; ð18Þ
where LðpÞ ¼ pcpf ðpÞ½J 2
1ðpcÞ þ Y 2

1ðpcÞ�=2, L(p) = 1 + O(p2 lnp) as p!0, L(p) = 1 + O(p
c) as p 
 1. The
symmetric kernel K(t, s) is continuous when the elastic properties are piecewise constant (c = 1), or pos-
sesses a logarithmic singularity in the other case (c = 1).

Upon inverting the Hankel transform we establish from (14) a simple formula for the contact pressure
Rp0ðrÞ ¼
ð1þ 2c þ 2c2 
 r2Þxð1þ cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1
 r2Þ½ð1þ 2cÞ2 
 r2�
q 


Z 1þc

rþc

ðs2 þ c2 
 r2ÞdxðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 
 ðr þ cÞ2Þðs2 
 ðr 
 cÞ2Þ

q : ð19Þ
Hence the stress concentration in the vicinity of the punch edge is proportional to the value of the auxiliary
function
lim
r!1

p0ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1
 r2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c þ c2

p
R

xð1þ cÞ: ð20Þ
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The expression for the embedding force follows from (3) and (13)
P ¼ 2pR
Z 1þc

c
sxðsÞds: ð21Þ
Another very simple relation can be derived for the work W done by the contact pressure p0(r) in causing
the punch displacement u0(r). Introducing the inner product of two functions as
wðsÞ;uðsÞð Þ ¼
Z 1þc

c
swðsÞuðsÞds; ð22Þ
we have
G0

1
 m0
W ¼ 2pR2 p0ðrÞ; u0ðrÞð Þ ¼ 2pR3

Z 1

0

f ðpÞA2
0ðpÞdp ¼ p2cR

Z 1

0

pLðpÞx2ðpÞ
J 2
1ðpcÞ þ Y 2

1ðpcÞ
dp

¼ p2cR xðsÞ; ðIþ KÞxð Þ: ð23Þ
Then
W ¼ p2cð1
 m0ÞR
G0

Z 1þc

c
sxðsÞgðsÞds: ð24Þ
To study the integral equation, we will use the Parseval theorem for the Weber transforms
Z 1

0

p-2ðpÞ
J 2
1ðpcÞ þ Y 2

1ðpcÞ
dp ¼

Z 1

c
t-2ðtÞdt ð25Þ
and the Hilbert space induced by the inner product (22). It is readily seen from (23) that
mkxk2 6 G0

p2ð1
 m0ÞcR
W 6 Mkxk2; ð26Þ

m ¼ inf LðpÞ > 0; M ¼ sup LðpÞ < 1: ð27Þ

This manifests that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðsÞ; ðIþ KÞxÞ

p
is an equivalent norm. The convergence in the functional space de-

fined by this norm is equivalent to the convergence in our Gilbert space and means the convergence by the
energy of the treated mechanical system. The Schwartz inequality, applied to (24), yields the upper estimate
for the error
jW 
 eW j 6 p2ð1
 m0ÞcR
G0

kxðsÞ 
 exðsÞk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1þc

c
sg2ðsÞds

s
; ð28Þ
where exðsÞ is some approximate solution and eW is the corresponding approximate value of the punch
energy.

The estimate (26) implies the positive definiteness of the operator I + K and provides the existence of an
unique solution. The stated allows to determine a solution with both projective and iterative methods.
These methods are effective as: (1) infL(p) is not approach zero; (2) supL(p) is not too large. The first of
these requirements is expected to be fulfilled. The second may be violated if one of the lower layers is weak
or stratum is bonded to the base and m0 approaches 1/2.

The spectrum of the self-adjoint strictly positive definite operator B = I + K is localized within the inter-
val [m,M]. Then a solution can be determined with the following iterative method (see Krasnosel�skii et al.,
1972)
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xkþ1ðtÞ ¼
T i

2B
M
m
Mþm

� �
T i

Mþm
m
M

� � xkðtÞ 
 B
1
T i

2B
M
m
Mþm

� �
T i

Mþm
m
M

� � 
 I

24 35gðtÞ; ð29Þ
where Ti(x) is the Chebyshev polynomial, i P 1. This method converges as the geometric progression with
the quotient
q ¼
T i

2B
M
m
Mþm

� �
T i

Mþm
m
M

� �
������

������ 6
1

T i
Mþm
m
M

� ��� �� :

In order to use simple iterations, we should know the norm of the operator K. The rough estimate of this
norm can be established by employment of the Parseval theorem (25)
kKk ¼ sup
k-k¼1

jð-;K-Þj ¼ sup
k-k¼1

Z 1

0

p½LðpÞ 
 1�-2ðpÞ
J 2

mðpkÞ þ Y 2
mðpkÞ

dp

���� ���� 6 sup jLðpÞ 
 1j: ð30Þ
If sup jL(p)
1j < 1, the iterations converge. This quantity may be expected to be small for many cases since
L(p)
1 = 0 at points p = 0 and p =1. It should be mentioned, however, that the method (29) is preferable
because of its rapid convergence.

Another approximate solution is based on the special approximation of the function L(p):
LðpÞ � eLðpÞ ¼ YN
m¼1

p2 þ a2m
p2 þ b2m

; eLð0Þ � 1; ð31Þ
where am and bm are distinct positive numbers. The operator of the Fredholm integral equation of the sec-
ond kind (16) remains strictly positive definite under this approximation. It can be rewritten as the dual
integral equations
Z 1

0

xðpÞ
YN
m¼1

p2 þ a2m
p2 þ b2m

pvc
1;0ðp; tÞ

J 2
1ðpcÞ þ Y 2

1ðpcÞ
dp ¼ gðtÞ; c 6 t 6 1þ c; ð32Þ

Z 1

0

xðpÞ
pvc

1;0ðp; tÞ
J 2
1ðpcÞ þ Y 2

1ðpcÞ
dp ¼ 0; 1þ c 6 t < 1; ð33Þ
with xðpÞ ¼ 2RA0ðpÞ=pcp.
The solution xðpÞ is sought of the form
xðpÞ ¼ 1eLðpÞ
Z 1þc

c
suðsÞvc

1;0ðp; sÞds

J lðpÞ
plþ1

XN
k¼1

xk
p2 þ a2k

; ð34Þ
where u(s) is a new unknown function, xk are some undetermined numbers and l is any positive number.
Substituting (34) to (32), we find
uðtÞ ¼ gðtÞ þ
XN
m¼0

xmumðtÞ; ð35Þ

umðtÞ ¼
Z 1

0

p
leLðpÞJ lðpÞvc
1;0ðp; tÞ

ðp2 þ a2mÞ½J 2
1ðpcÞ þ Y 2

1ðpcÞ�
dp: ð36Þ
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After evaluation arising integrals by contour integration, the second equation (33) becomes
XN
k¼0

xk
IlðakÞ
alþ1
k


 Pk

Z 1þc

c
suðsÞW k;0ðsÞds

� �
akK0ðaktÞ
K1ðakcÞ

¼ 0; t > 1þ c; ð37Þ
where Wk,v(s) = Il(ak s)K1(akc)
(
1)1
l I1(akc)Kl(ak s), Il(t) and Kl(t) are the modified Bessel functions;
Pk ¼
2

p

YN
m¼1

ðb2m 
 a2kÞ
YN
m¼1
m6¼k

ða2m 
 a2kÞ

1
:

The integral representation
K0ðatÞ ¼
Z 1

t

expð
asÞffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 
 t2

p ds
and the linear independence of the exponents show the functions K0(akt) to be linearly independent as well.
Thus the coefficients in (37) are equal to zero. Then putting (35) into these coefficients leads to the system of
the linear algebraic equations
XN
m¼1

xmam;k ¼ 
gk; k ¼ 1; 2; . . . ;N ; gk ¼
Z 1þc

c
sgðsÞW k;0ðsÞds; ð38Þ

am;k ¼
Z 1þc

c
sumðsÞW k;0ðsÞds


I lðakÞ
Pkalþ1

k

dk;m: ð39Þ
Here dk,m is the Kronecker delta. This system is equivalent to the integral equation with the strictly positive
definite operator and, therefore, has an unique solution.

The matrix elements am,k can be evaluated explicitly. We replace um(s) by its integral representation (36)
and interchange the order of integration. The inner integral is evaluated by means of the known integral
(Prudnikov et al., 1986). Then the arising integral can be readily found by examination of the contour
integrals
I

L

zs
leLðzÞJ lðzÞH ð1Þ
s ðzð1þ cÞÞ

ðz2 þ a2mÞðz2 þ a2kÞH
ð1Þ
1 ðzcÞ

dz;
where s = 0,1; the contour L consists of the interval [
R,R] of the real axis and the arc z = R,
0 6 arg(z) 6 p; H ð1Þ

s ðzÞ is the Bessel function of the third kind.
Finally, we have
am;k ¼
p
2

XN
r¼1

ð1þ cÞUr;kIlðbrÞb
l
1
r

QN
l¼1

ðb2r 
 a2l Þ

ðb2r 
 a2kÞðb2r 
 a2mÞK1ðbrcÞ
QN
l¼1
l 6¼r

ðb2r 
 b2l Þ

1

; ð40Þ

Ur;k ¼ brK1ðbrð1þ cÞÞW k;0ð1þ cÞ þ akK0ðbrð1þ cÞÞW k;1ð1þ cÞ:
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We shall prove that if the approximation is fairly accurate
jeðpÞj
LðpÞ 6 e; eðpÞ ¼ LðpÞ 
 eLðpÞ;
jeðpÞjeLðpÞ ¼ jeðpÞj

LðpÞ½1
 eðpÞ=LðpÞ� 6
e

1
 e
;

ð41Þ
then the corresponding approximative value of the punch energy eW is close to the exact value W.
Let x0(t) be a solution of the equation ðIþ eKÞx ¼ gðtÞ where eK is obtained from K by replacing L(p) byeLðpÞ. We write
ðIþ KÞðx 
 x0Þ ¼
Z 1

0

p
eðpÞx0ðpÞvc

1;0ðp; sÞ
J 2
1ðpcÞ þ Y 2

1ðpcÞ
dp:
Since the operator I + K is symmetric, we obtain
G0

p2ð1
 m0ÞcR
jW 
 eW j ¼

Z 1þc

c
tðxðtÞ 
 x0ðtÞÞgðtÞdt ¼ ðxðtÞ 
 x0ðtÞ; ðIþ KÞxÞ

¼ ðxðtÞ; ðIþ KÞðx 
 x0ÞÞ ¼
Z 1

0

p
eðpÞx0ðpÞxðpÞ
J 2
1ðpcÞ þ Y 2

1ðpcÞ
dp:
Now the Parseval theorem coupled with the inequalities 2xy 6 x2 + y2 and (41) gives
j W 
 eW j6 e
2

W þ 1

1
 e
eW� �

:

Upon using this estimate we achieve the errors for the punch energy
j W 
 eW j
W

6
eð2
 eÞ
2
 3e

;
j W 
 eW jeW 6

e
1
 e

: ð42Þ
One might see that the algorithm remains valid if we take some ec instead of c and any even rational approx-
imation instead of the approximation (31).

Note that approximations similar to (31) are often used in the Russian literature for equations contain-
ing kernels of integral transforms which arise from the Sturm–Liouville problem (see, for example,
Aizikovich and Trubchik, 1989). Their approach is based on explicit representations of the solutions in
the form of finite combinations of the functions that obey the appropriate differential equation.
3. Case n = 1

A solution for n = 1 is constructed in a manner which is analogous to the manner suggested for the axi-
ally symmetric problem. The discontinuous integral
Z 1

0

pvc
1;0ðp; tÞJ 1ðprÞdp 


2

pcr
¼

2ðr2 þ c2 
 t2Þ

pcr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððr þ cÞ2 
 t2Þððr 
 cÞ2 
 t2Þ

q ; 0 < r < t 
 c;

0; r > t 
 c;

8><>: ð43Þ
evaluated by means of the integrals from the handbook by Prudnikov et al. (1986) is employed in place of
(9). Its inversion gives
R1½J 1ðprÞ� ¼ pvc
1;1ðp; tÞ; ð44Þ
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R1½�� ¼ 
 2

pc
d

dt

Z t
c

0

ð�Þ ðr2 þ c2 
 t2Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 
 ðr þ cÞ2Þðt2 
 ðr 
 cÞ2Þ

q : ð45Þ
These relations and the representation
2R
pc

A1ðpÞ ¼ p
Z 1þc

c
swðsÞvc

1;1ðp; sÞds ¼ pwðpÞ ð46Þ
enable us to derive the Fredholm integral equation of the second kind
ðIþ SÞw ¼ hðtÞ; c 6 t 6 1þ c; ð47Þ

Sw ¼
Z 1þc

c
swðsÞSðt; sÞds; hðtÞ ¼ R1½u1ðrÞ�; ð48Þ

Sðt; sÞ ¼
Z 1

0

p½LðpÞ 
 1�
vc
1;1ðp; tÞv

c
1;1ðp; tÞ

J 2
1ðpcÞ þ Y 2

1ðpcÞ
dp: ð49Þ
The corresponding contact pressure can be found from the expression
Rp1ðrÞ ¼
ð1þ 2c 
 r2Þð1þ cÞwð1þ cÞ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1
 r2Þ½ð1þ 2cÞ2 
 r2�

q þ
Z 1þc

rþc

ðr2 þ c2 
 s2Þd½swðsÞ�

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 
 ðr þ cÞ2Þðs2 
 ðr 
 cÞ2Þ

q ð50Þ
that gives the stress intensity factor
lim
r!1

p1ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1
 r2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c þ c2

p
R

wð1þ cÞ: ð51Þ
The condition (4) becomes
2pR2Re

Z 1þc

c
wðsÞðs2 
 c2Þds ¼ Pd: ð52Þ
The work W1 done by the contact pressure p1(r) in causing the conjugate punch displacement u�1ðrÞ is
W 1 ¼
p2ð1
 m0ÞcR

G0

Z 1þc

c
swðsÞh�ðsÞds: ð53Þ
It is readily seen that m 6 kI + Sk 6M, where numbers m and M are the same that were defined above in
the axially symmetric case. This involves that the numerical methods pointed out above for Eq. (16) are also
suitable for Eq. (47). The estimate for the norm of the integral operator remains the same as well:
kSk 6 supjL(p)
1j.

A slight correction permits to adopt the above method of the approximate reduction to the system of the
algebraic equations. We take a solution of the form
wðpÞ ¼ 1eLðpÞ
Z 1þc

c
s/ðsÞvc

1;1ðp; sÞds

J lþ1ðpÞ
plþ1

XN
k¼1

yk
p2 þ a2k

; ð54Þ
where /(s) is a new unknown function, yk are undetermined numbers, l is any positive number and eLðpÞ is
defined by (31).
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The substitution (54) coupled with the approximation LðpÞ � eLðpÞ leads to the equations
/ðtÞ ¼ hðtÞ þ
XN
m¼0

ym/mðtÞ;
XN
m¼1

ymcmk ¼ 
hk; k ¼ 1; 2; . . . ;N ; ð55Þ

/mðtÞ ¼
Z 1

0

p
leLðpÞJ lþ1ðpÞvc
1;1ðp; tÞdp

ðp2 þ a2mÞ½J 2
1ðpcÞ þ Y 2

1ðpcÞ�
; hk ¼

Z 1þc

c
hðsÞW k;1ðsÞs ds;

cm;k ¼
p
2

XN
r¼1

ð1þ cÞUr;kIlþ1ðbrÞb
l
1
r

QN
l¼1

ðb2r 
 a2l Þ

ðb2r 
 a2kÞðb2r 
 a2mÞK1ðbrcÞ
QN
l¼1
l 6¼r

ðb2r 
 b2l Þ

1

: ð56Þ
4. Indentation of a flat punch

For an inclined circular flat punch,
u0ðrÞ ¼ G0c=ð1
 m0Þ ¼ w0; 2u1ðrÞ ¼ c1rRG0=ð1
 m0Þ ¼ w1r;

p
1ðrÞ ¼ p1ðrÞ:
ð57Þ
In this case, the right parts of the integral equations for the auxiliary functions can be evaluated explicitly:
gðtÞ ¼ w0R0½1� ¼ w0 lim
p!0

R0½J 0ðprÞ� ¼
2w0

pc
;

hðtÞ ¼ w1R1

r
2

h i
¼ w1 lim

p!0

1

p
R1½J 1ðprÞ� ¼

w1

ptc
ðt2 
 c2Þ:
We will solve Eq. (16) with the simplest and weakest version i = 1 of the algorithm (29):
xkþ1ðtÞ ¼
M þ m
 2

M þ m
I
 2

M þ m
K

� �
xkðtÞ þ

2

M þ m
gðtÞ;

kxðtÞ 
 xkðtÞk 6 kx0ðtÞk
qkþ1

1
 q
; q ¼ M 
 m

M þ m
:

Taking x0(t) = 2w0/pc and making one iteration, we obtain the approximate solution
pc
2w0

xðtÞ � 1
 2ð1þ cÞ
M þ m

Z 1

0

½LðpÞ 
 1�
vc
1;1ðp; 1þ cÞvc

1;0ðp; tÞ
J 2
1ðpcÞ þ Y 2

1ðpcÞ
dp ð58Þ
whose absolute error is less than 2w0h/pc, h = (M
m)2/[2m(M + m)].
An approximate solution of Eq. (47) having the error w1h/pc can be derived in an analogous manner
2pc
w1

wðtÞ � 1

t
ðt2 
 c2Þ 
 2

M þ m

Z 1

0

½LðpÞ 
 1�
vc
1;1ðp; tÞvðp; cÞ

J 2
1ðpcÞ þ Y 2

1ðpcÞ
dp;

vðp; cÞ ¼ ð1þ cÞ2vc
1;2ðp; 1þ cÞ þ c2vc

1;0ðp; 1þ cÞ:
ð59Þ
The approximate formulas connecting the displacements of the punch with the imbedding force now fol-
low from the relations (21) and (52)



Table
Result

m

0
0.25
0.3
0.4
0.45
0.49
0.495
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ð1
 m0ÞP
RG0c

� 4þ 2

c

 8ð1þ cÞ2

cðM þ mÞ

Z 1

0

½LðpÞ 
 1� vc
1;1ðp; 1þ cÞ

h i2
p J 2

1ðpcÞ þ Y 2
1ðpcÞ

 ! dp; ð60Þ

2ð1
 m0ÞPd

R3G0c1
� 4þ 1

c
þ 2c 
 4c2 þ 4c3 ln

1þ c
c


 8

cðM þ mÞ

Z 1

0

½LðpÞ 
 1�v2ðp; cÞ
p½J 2

1ðpcÞ þ Y 2
1ðpcÞ�

dp: ð61Þ
Of course, the above approximations are expected to be true as h is small. Work out them for a homoge-
neous layer.

For the frictionless homogeneous layer (problem A),
f ðpÞ ¼ cosh 2kp 
 1

sinh 2kp þ 2kp
: ð62Þ
In this case c = k/p and calculations yield: m = 1, M = 1.284238, q = 1.2443 · 10
2, h = 1.76845 · 10
2.
For the homogeneous layer which is bonded to the rigid base (problem B), we have
f ðpÞ ¼ 2j sinh 2kp 
 4kp

2j cosh 2kp þ 4k2p2 þ j2 þ 1
; j ¼ 3
 4m: ð63Þ
The results of calculations are given in the Table 1, cp = k(1
2m)/(1
m)2.
It is seen that one can employ the above approximate solutions for all k at least if m 6 0.4. We note that

in the most of applications, such as geophysics, building and mechanical designing, and so forth, it is ac-
cepted to use m = 0.25 or 0.3. The estimates for the error h deteriorate as the Poisson ratio m approaches 1/2.
But we remind that these estimates are very rough. In many cases, the algorithm remains efficient as m close
by 1/2 if some more accurate bounds of the eigenvalues is taken instead of M and m. So, it can be readily
found that for k 
 1 the smallest upper bound of the spectrum is 1 + O(1/k). The limiting case of the
incompressible medium is peculiar since c � 0 for m = 1/2 and the lower bound m = 0. Moreover, if
k!0, then kI + Kk!0, kI + Sk!0 under any choice c = O(kc), c < 3/2, and the operators I + K, I + S

become unbounded as c = O(kc), c P 3/2. Consequently, for the bonded thin incompressible layer the algo-
rithm is not effective.

Asymptotic analysis of integrals based on the Mellin transform technique (Bleistein and Handelsman,
1986) enables us to derive from the relations (60), (61), (58) and (59) very simple asymptotic formulas:
eP ¼ ð1
 m0ÞP
RG0c

¼ 4þ 2
 4D
c

þ O
1

c2

� �
; k ! 1; ð64Þ

M ¼ 2ð1
 m0ÞPd

R3G0c1
¼ 16

3
þ O

1

c2

� �
; k ! 1; ð65Þ
1
s of calculations for the problem B

m M q ¼ M
m
Mþm h

1 1.253756 0.1126 1.429 · 10
2

1 1.273151 0.1202 1.641 · 10
2

1 1.311557 0.1348 2.1 · 10
2

1 1.587134 0.2269 6.662 · 10
2

1 2.2816 0.3905 0.25026
1 8.5522 0.7906 2.98548
1 16.5526 0.8861 6.89024
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and
TableeP ¼ ð1

k

1/3
1/2
1
2
4

eP ¼ 2

c
þ 4
 ð1þ cÞðC 
 C0dÞ þ B0ðdÞd2; k ! 0; ð66Þ

M ¼ 1

c
þ 4
 C þ 2c 
 ð3C 
 2C0Þd þ B1ðdÞd2; k ! 0; ð67Þ
where d = c/(1 + c), Bn(d) = O(1) as k!0,
D ¼ 8

p2ðM þ mÞ

Z 1

0

L p
c

� �

 1

p½J 2
1ðpÞ þ Y 2

1ðpÞ�
dp;

C ¼ 8

pðM þ mÞ

Z 1

0

L
p
c

� �

 1

� �
dp
p2

; C0 ¼
4

M þ m
:

For the problem A, D = 0.26266, C = 1.64456, C0 = 1.75113. For the problem B as m = 0.3, D = 0.23554,
C = 1.95395, C0 = 1.73044. The discrepancies of (64) and (65) from the exact asymptotic expansions
(Vorovich et al., 1974)
eP ¼ 4
X4

k¼0

a0
k

� �k

 20:064

3pk3
1þ 4a0

pk

� �
; a0 ¼ 1:377; ð68Þ

M ¼ 16

3
1þ 5:016

3pk3

� �
; ð69Þ
are <1% for k P 4.
Choosing B0(d) = 2.76, B1(d) = 10.5
28.5d2 for the problem A and B0(d) = 5.22, B1(d) = 11.8
38d2 for

the problem B, we obtain certain simple approximate formulas. Results for eP are summarized in Table 2,
where the columns I and II give computations by formulas (60) and (66), respectively. The column III con-
tains the values of eP which have been obtained as k 6 2 in Ufliand (1967) with the Cooke–Lebedev method
by numerical analysis of the Fredholm equation of the second kind; for k = 4 this one is found from the
exact asymptotic formula (68). Table 3 for (61) and (67) has the same structure. We observe that our expres-
sions are almost exact as k 6 4 and overlap the values (64) and (65) at k = 4.

The asymptotic expansion for the stress intensity factor is given by the relation
lim
r!1

½p0ðrÞ þ 2p1ðrÞ cos h�
ffiffiffiffiffiffiffiffiffiffiffiffi
1
 r2

p
¼ 2G0

pð1
 m0ÞR
½cr0 þ c1r1R cos h�; ð70Þ

ffiffiffi
d

p
r0 ¼

1
 1
 1

2c

� �
1
c Dþ O 1

c2

� �
; k ! 1;

1
 2
 C0

8
d þ Oðd2Þ; k ! 0;

8>><>>: ð71Þ
2

m0ÞP
RG0c

A B

I II III I II III

21.219 21.242 21.04 25.142 25.152 24.80
14.945 14.991 14.88 17.468 17.482 17.36
8.7414 8.834 8.80 9.882 9.912 9.92
5.972 5.983 6.04 6.419 6.397 6.48
4.882 4.928 4.884 5.059 5.115 5.077



Table
The st

k

1/3
1/2
1
2
4

Table 3
M ¼ 2ð1
m0ÞPd

R3G0c1

A B

k I II III I II III

1/3 11.885 11.950 11.888 13.683 13.734 13.632
1/2 8.848 8.950 8.944 9.950 10.007 10.016
1 6.233 6.305 6.352 6.601 6.613 6.752
2 5.523 5.587 5.552 5.601 5.571 5.632
4 5.381 5.379 5.361 5.402 5.408 5.378

Table
The st

k

1/3
1/2
1
2
4
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ffiffiffi
d

p
r1 ¼

1
 O
1

c2

� �
; k ! 1;

1þ d 
 6
 3C0

8
c þ 2

M þ m
d2 þ QðdÞ; k ! 0;

8>><>>: ð72Þ
where Q(d) = O(d3).
The results of calculations for r0 and r1 are represented in Tables 4 and 5, which are of the same struc-

ture as Table 2. It is taken Q(d) = Cd3 in the corresponding asymptotic expansions: C = 2.6 for the problem
A and C = 3.63 for the problem B as m = 0.3. We again see that the approximate formulas are remarkable
accurate.

We accentuate that the leading terms of all asymptotic expansions obtained above, both k!1 and
k!0, coincide with the exact leading terms of the asymptotic expansions (Vorovich et al., 1974). One might
guess that the leading terms of the asymptotic expansions as c � 1 for the inhomogeneous stratum have the
same form:
P � 2G0Rc
cð1
 m0Þ

; Pd � G0R3c1
2cð1
 m0Þ

; ð73Þ
4
ress intensity factor r0

A B

I II III I II III

3.165 3.165 3.142 3.472 3.472 3.439
2.622 2.623 2.608 2.864 2.566 2.845
1.923 1.934 1.915 2.082 2.090 2.071
1.456 1.4752 1.460 1.548 1.566 1.551
1.215 1.182 1.214 1.257 1.224 1.258

5
ress intensity factor r1

A B

I II III I II III

1.678 1.680 1.672 1.812 1.813 1.802
1.429 1.434 1.426 1.528 1.529 1.524
1.144 1.153 1.148 1.194 1.194 1.198
1.033 1.028 1.032 1.047 1.033 1.047
1.008 1.006 1.005 1.011 1.018 1.008
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and
lim
r!1

½p0ðrÞ þ 2p1ðrÞ cos h�
ffiffiffiffiffiffiffiffiffiffiffiffi
1
 r2

p
� 2G0

pð1
 m0ÞR
ffiffiffi
c

p ½cþ c1R cos h� �
P

ffiffiffi
c

p

pR2
1þ 4

d
R
cos h

� �
; ð74Þ
under the condition that the coefficients of the expansion of f(p/c) in ascending powers of p are not great
numbers. This statement should be, however, rigorously proved.

The generalization of the relations (73) for the punch having the three-dimensional profile v(q,h),
q = Rr, can be easily derived
cð1
 m0Þ
2G0R

P � c
 1

pR2

Z R

0

Z 2p

0

vðq; hÞqdqdh; ð75Þ

2cð1
 m0Þ
G0R3

Pd � c1 

4

pR4

Z R

0

Z 2p

0

vðq; hÞq2 cos hdqdh: ð76Þ
Note that the relations (75) and (76) are exactly the solution for a Winkler foundation of stiffness k = 2G0/
p(1
m0)cR indented by a rigid indenter. One might find from (19) and (50) that, at least for the harmonics
n = 0,1, the leading terms of the contact pressures obey Winkler�s law pn(r) = kun(r) everywhere excepting
very narrow neighborhoods of the edge and points of discontinuity of the derivatives u0nðrÞ. In the case of
the homogeneous layer and a smooth punch, this confirms Barber�s approximate theory (Barber, 1990). For
example, if the thin layer is indented by a rigid sphere of radius R0, then p(r) = k(c
r2/2R0). The condition
p(R) = 0 now yields 2R0c = R2 and
pðrÞ ¼ k
2R0

ðR2 
 r2Þ; ð77Þ
where the contact radius is determined from (75): 2pkR3 ¼ 4R0P. For the homogeneous layer, this asymp-
totic solution is well known (Vorovich et al., 1974; Jaffar, 1989).

We also see from the foregoing that the concept of ‘‘a thin layer’’ is not only geometric but depend via c
upon elastic properties and stratification of the medium as well. In particular, the foregoing theory does not
work for the incompressible stratum bonded to the rigid substrate. The results for the homogeneous layer
(Johnson, 1985; Barber, 1990; Jaffar, 1989; Alexandrov, 2003) predict a dramatic change of the asymptotic
behavior of the thin stratum in this limit. Author�s paper (Malits, 2004) extents the technique developed
here to this case.

In conclusion, we emphasize the essential difference between Eqs. (16) and (47) and equations obtained
with the Cooke–Lebedev method (or, equivalently, with the orthogonal polynomials method) whose oper-
ators in the studied problem tend to zero as c!0.
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